Рекомендовано к печати ученым советом
Донецкого национального технического университета

Рецензенты:
В. Л. Плющенко, чл.-корр. НАНУ, д-р техн. наук, профессор
(Донецкий государственный университет управления)
Д. А. Дидюк, д-р техн. наук, профессор
(ОАО «Завод «Универсальное оборудование»)

Смирнов А. Н.
C50 Крупный сляток : [моногр.] / А. Н. Смирнов, С. Л. Макаров,
В. М. Сафонов, А. Ю. Цуприн ; Донецкий национальный техн. ун-т.

В монографии изложены основные положения теории затвердевания расплавов
и выполнено обобщение современных теоретических и технологических предста-
влений, касающихся производства крупных стальных слятков. Основные результа-
ты, приведенные в настоящей работе, базируются на монографиях фундаменталь-
ных исследований, проведенных авторами в условиях нескольких крупных машино-
строительных предприятий, в которых они принимали непосредственное учас-
ствие, а также на современных достижениях в этой области, представленных в науч-
ных публикациях.
Монография рассчитана на специалистов, занимающихся проблемами затверде-
вания слятков и качества металлопродукции, ученых научно-исследовательских ин-
ститутов, инженерно-технических работников металлургических и машинострои-
тельных предприятий, преподавателей университетов, а также аспирантов, маги-
стратов и студентов старших курсов, обучающихся по направлению «Металлургия».
СОДЕРЖАНИЕ

Введение..6

Глава 1. Современные сталелитейные цехи для производства крупных кузнечных слитков.
 1.1. Основные технологические схемы, применяемые для производства крупных кузнечных слитков........12
 1.2. Конструкция современной дуговой сталеплавильной печи и технология выплавки стали для производства крупных слитков...25
 1.3. Особенности технологии плавки стали в ДСП для производства крупных слитков..................34
 1.4. Доводка стали в агрегате ковш-печь......................39
 1.5. Вакуумирование стали в ковше.........................48
 1.6. Отделение разливки стали в слитки...............56

Глава 2. Кристаллизация металлических расплавов.
 2.1. Свойства и строение жидких металлов и сплавов...60
 2.2. Литейные свойства стали.................................67
 2.3. Основы термодинамической теории кристаллизации...74
 2.4. Отвод теплоты при кристаллизации расплава...84
 2.5. Общие сведения о росте кристаллов и образовании кристаллических зон в слитке.....................90

Глава 3. Формирование крупного стального слитка.
 3.1. Методы исследования процесса кристаллизации стальных слитков..100
 3.2. Конвективный тепло- и массообмен в жидкой сердцевине слитка...108
 3.3. Структурные зоны в стальном слитке..................116
 3.4. Усадочные явления в процессе затвердевания и
<table>
<thead>
<tr>
<th>Глава 4. Конструкция крупных слитков и оснастка для их отливки</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Принципы конструирования крупных слитков.................146</td>
</tr>
<tr>
<td>4.2. Основные типы промышленных слитков........................150</td>
</tr>
<tr>
<td>4.3. Изложницы и оснастка для отливки крупных слитков........161</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава 5. Разливка стали в крупные слитки</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Стальнойковочный ковш......................172</td>
</tr>
<tr>
<td>5.2. Наполнение изложницы металлом..............184</td>
</tr>
<tr>
<td>5.3. Температура жидкой стали и скорость литья.......193</td>
</tr>
<tr>
<td>5.4. Разливка в вакууме и защитной атмосфере........199</td>
</tr>
<tr>
<td>5.5. Выдержка слитков в изложницах...............205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава 6. Основные дефекты крупных стальных слитков</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Поверхностные дефекты................................212</td>
</tr>
<tr>
<td>6.2. Внутренние дефекты..................................225</td>
</tr>
<tr>
<td>6.3. Неметаллические включения в слитках.............234</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава 7. Процессы производства крупных слитков улучшенного качества</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Модифицирование стали.....................................244</td>
</tr>
<tr>
<td>7.2. Применение внешних воздействий при затвердевании слитков....248</td>
</tr>
<tr>
<td>7.3. Процессы специальной электрометаллургии для производства крупных слитков..................................256</td>
</tr>
<tr>
<td>7.4. Полунепрерывная разливка слитков..................................262</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Приложения ..269</th>
</tr>
</thead>
<tbody>
<tr>
<td>Литература ...276</td>
</tr>
</tbody>
</table>
ВВЕДЕНИЕ

Начиная с 80-х годов прошлого столетия процессы выплавки, вспеченной обработки и разливки стали рассматриваются как система совмещённых технологий. В основу развития теории и практики данного комплекса технологий положена достаточно небольшая совокупность технологических парадигм, предшествующих в устойчивых технических системах и ограниченных проявлениями базовых физических и химических закономерностей. Эти системы в настоящее время представляются достаточно хорошо продуманными и обоснованными, поскольку охватывают весь процесс производства, начиная с подготовки сырья и производства энергии и заканчивая чистотой стали и ее эксплуатационными свойствами, что обеспечивает оптимальное качество металлоценупродукции массового сортамента при минимальных затратах. При этом базисом современной системы производства стали массового сортамента являются техника и технология непрерывной разливки, которые продолжают совершенствоваться, обеспечивая производителям все новые возможности, как в части новых марок стали, так и в части профиля непрерывнолитой заготовки, все более приближающегося к профилю конечной продукции.

Основным производителем и потребителем слитков в настоящее время стало энергетическое и тяжелое машиностроение, где актуальность повышения качества металлоценупродукции продолжает возрастать. Вместе с тем производство широкого спектра типоразмеров крупного кузнецового слитка практически невозможно организовать в сталеплавильном цехе металлургического завода из-за необходимости выплавки «номерных» порций стали
сложного сортамента при сравнительно малом годовом объеме производства. При этом в цехе необходимо иметь резерв производственных площадей в разливочном пролете, специальное транспортное оборудование, большой парк изложниц в широком диапазоне типоразмеров, поддонов и пр. Кроме того, экономический анализ производства стальных слитков показывает, что доля слитков массой более 20-25 т составляет примерно 10-15% от общего количества, однако на их изготовление приходится около половины всех производственных затрат вследствие высокой трудоемкости.

Специфика внепечной доводки стали при отливке крупных слитков проявляется в наличии нескольких типоразмеров плавильных агрегатов и сталеразливочных ковшей, сложном сортаменте стали, организации процесса накопления металла перед разливкой и параллельной обработке стали в двух-трех ковшах. Следовательно, к конструкции установки ковш-печь и вакууматора предъявляются особые требования. Кроме того, параметры агрегата, например, такие как мощность печного трансформатора, должны полностью соответствовать режимам форсированного проведения критических с энергетической точки зрения технологических операций в заданном ритме работы.

В процессе производства крупного слитка громадное значение имеет организация эффективной разливки стали в изложницы. Кроме того, расчет количества разливочных канав и постановочных мест производят для нескольких групп типоразмеров слитков с учетом логистики готовых слитков, изложниц и поддонов, так как охлаждение слитков разного развеса до разной температуры может отличаться довольно существенно: от нескольких часов до 2-3
суток.

Таким образом, в отличие от традиционных технологических схем, производство продукции энергетического и тяжелого машиностроения основано на применении уникальных технологических решений. Данные технологические схемы отражают производственные особенности каждого предприятия и включают выплавку и разливку стали на крупные слитки или отливки, обработку слитков методом свободной ковки, высокоточную механическую и термическую обработку, а также сборку крупногабаритных деталей, узлов, машин, агрегатов и целых секций.

Производство крупных кузнецких слитков, как правило, организовано в специализированных сталеплавильных цехах, оборудованных дуговыми и индукционными сталеплавильными печами. Планировка, а также возможности основных технологических агрегатов и подъемно-транспортного оборудования данных цехов учитывают все основные технологические аспекты производства. При этом они должны быть рассчитаны на определенную производительность по жидкой стали (часть которой, как правило, транспортируют в литейный цех) применительно к производству слитков типового развеса, а также к слиткам максимального развеса с учетом перспективы развития. Естественно, что техническая реализация столь разноплановых параметров производительности цеха существенно повышает объем капитальных затрат.

Развитие энергетического и тяжелого машиностроения, судостроения, а также металлургической техники сопровождается увеличением единичной мощности энергетических установок, что в свою очередь требует изготовления крупногабаритных, а порой уникальных, роторов турбин
и генераторов, бандажей, прокатных валков, а также валов для силовых агрегатов большой мощности. В связи с этим в последнее время в мире отмечена тенденция роста количества изделий, изготовляемых из слитков массой 100-200 т, а также осваивается выпуск уникальных поковок из 300-400 тонных стальных слитков и более. При этом на международном рынке крупных кузнецких слитков можно выделить следующие основные тенденции:

- повышение требований к качеству, служебным и весовым характеристикам слитков;
- выполнение заказов «точно в срок» с соблюдением индивидуальных требований заказчиков, которые часто выражаются в разделении заказа на малые партии слитков и ужесточении условий поставки;
- увеличение потребности в слитках из специальных марок стали и со специальными свойствами.

Украина производит разнообразное оборудование для тяжелой промышленности, энергетики (электрогенераторы, турбины, мощные трансформаторы), железнодорожного транспорта (локомотивы, грузовые вагоны), горнодобывающей промышленности (экскаваторы, бульдозеры, угольные комбайны), металлургии (сталеплавильные агрегаты, МНЛЗ, прокатные станы), автотранспорта (грузовики, автобусы, легковые автомобили), гражданской авиации (пассажирские самолеты, авиационные двигатели) и сельского хозяйства (тракторы, сельскохозяйственная техника) и т. п. Стратегическим направлением промышленной политики Украины является наращивание экспортного потенциала в приоритетных отраслях, таких, как авиастроение, судостроение, энергомашиностроение, тяжелое и металлургическое машиностроение и пр. На долю машиностроительного

Крупный слиток
комплекса в Украине приходится почти 13,4% от общего объема промышленной продукции. На сегодняшний день стратегической задачей в отраслях тяжелого машиностроения является ускоренное проведение реконструкции и модернизации технологического оборудования заводов и повышение качества продукции в соответствии с требованиями мирового рынка.

Очевидно, что развитие сталеплавильного комплекса для производства крупного кузнецчного слитка достаточно актуально и перспективно, так как обеспечивает выпуск продукции с высокой добавленной стоимостью, которая увеличивается от слитка к поковке и готовому изделию.

В настоящей монографии предпринята попытка обобщения современных теоретических и технологических представлений, касающихся производства крупных стальных слитков. Основные обобщения, приведенные в настоящей работе, базируются на многолетних исследованиях, проведенных авторами в условиях нескольких крупных машиностроительных предприятий, в которых авторы принимали непосредственное участие, а также на современных достижениях в этой области, представленных в научных публикациях.

Монография предназначена для работников научно-исследовательских институтов, инженерно-технических работников металлургических и машиностроительных предприятий, преподавателей университетов, а также аспирантов, магистров и студентов старших курсов, обучающихся по направлению «Металлургия».